
Cryptography 101

In the article explaining Virtual Private Networks (VPNs), I intentionally did not discuss the
cryptography employed by VPNs. Therefore, this companion article attempts to address that
complicated subject, which consumed 30 years of my career. Since most web sites and VPNs generally
use the Transport Layer Security (TLS) protocol, the information below is geared toward that protocol.
See Transport Layer Security – Wikipedia, https://en.wikipedia.org/wiki/Transport_Layer_Security.

Disclaimer 1: This article does not cover the National Security Agency's Type 1 High Assurance
Internet Encryptor (HAIPE) products, described in High Assurance Internet Protocol Encryptor –
Wikipedia, https://en.wikipedia.org/wiki/High_Assurance_Internet_Protocol_Encryptor. These
products use a different protocol and classified algorithms, which are not discussed here.

Disclaimer 2: This article has nothing to do with Crypto Currency, although I will identify the
algorithm (SHA-256) used by that financial technology.

Ethical, Legal, and Export Considerations
Cryptography, like many technologies, is amoral, that is, neither good nor bad. As such, it can be used
for both good purposes and bad purposes, although it is now recognized that the good purposes far
outweigh the bad purposes.

From WW-II to the late 1990s, the United States Government attempted to keep the technology out of
the hands of terrorists, drug trafficers, etc.. Therefore, cryptography was the subject of strict export
regulations under the International Traffic in Arms (ITAR) regulations by the Department of State
(DoS) and Department of Commerce (DoC) as a weapon. Gradually, it was recognized that the
restrictions were of little effect, because the bad guys could always procure the technology through
other channels. It was also recognized that corporate security, personal security, e-commerce all
depended on cryptography for good purposes. Today, the enforcement of the export regulations is more
relaxed, as long as you use cryptography based on publicly published algorithms. However, you still
have to go through the DoS or DoC.

Still, there are politicians that try to make a name for themselfs by trying to ban cryptography, with the
claim that “child pornographers” use it. True, they do use it, but all of us also use it on a daily basis.
Some countries and, occasionally, the United States attempt to either ban cryptography or force the use
of government-provided cryptography to essentially spy on their populations.

Standards Bodies
It is always best to use cryptographic algorithms that have been thoroughly tested and evaluated, before
being standardized. This is especially true for such industries as the Financial Services Industry, where
they do not want to be held liable if the cryptography they use proves to not be sufficiently strong.
While, most countries have standards bodies, many follow the lead of the United States for commercial
algorithms.

Internet Engineering Task Force (IETF)

This is an international standards body that sets the standards for all aspects of the Internet. They
intentionally do not follow any countries lead and do their own thing, with a huge number of academic

https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/High_Assurance_Internet_Protocol_Encryptor
https://en.wikipedia.org/wiki/High_Assurance_Internet_Protocol_Encryptor
https://en.wikipedia.org/wiki/Transport_Layer_Security

experts from around the globe. All standards are developed over considerable time and with many
iterations, by members of large working groups. The IETF's documents are published as Request for
Comments (rfx-xxxx), where rfcs are not updated bu replaced by new rfcs with new numbers.

National Institute of Standards and Technology (NIST), formerly National
Bureau of Standards

This is United States standards body that sets the standards for many aspects of our lives. For
cryptography, the NIST standards are used throughout the non-military parts of the United States
Government and most commercial applications, including VPNs and the Financial Services Industry.
NIST's process for standardizing cryptography begins with a world-wide invitation to submit candidate
algorithms and a world-wide invitation to evaluate and comment on algorithms. The process goes
through several lengthy, democratic phases, and down-selects, until the final choice is made. The only
part of the process that is not public, are evaluations and comments made to NIST by the National
Security Agency. NIST's final documents are published as Federal Information Processing Standard
Publications (FIPS PUB xxx).

National Security Agency

The NSA is a closed environment that provides cryptographic algorithms and guidance for the United
States military and related industries. Most of their output is classified and not openly available. The
NSA also provides guidance for NIST and export determinations for DoS and DoC.

Classes of Cryptographic Algorithms

Digital Signature Algorithms

Digital signature is used by the TLS protocol to authenticate remote entities. For example, if you see
:https” (S = secure) and a padlock in you browser, the entity, usually a web site, to which you are
connected has been successfully authenticated.

There are two approaches to digital signatures:

For short messages, the message is encrypted by the signer's private key and decrypted by the
recipient with the signer's public key. This is called digital signature with message recovery or
“sigcryption.” It works only with the RSA algorithm and not with DSA or ECDSA.

For longer messages, a hash of the message is generated, as described below, and it is this hash
that is signed with the signer's private key. The recipient generates a hash of the received
message and decrypts thes igned hash with the signer's public key. If the two hashes match, the
message is authenticated. This is called “digital signature with appendix” and is not used by the
TLS protocol.

The RSA algorithm is based on the fact that multiplication of two large prime numbers is easy, while
factoring a large composite number into its constituent prime numbers is computationally infeasible.
By “large” we currently use 4,096-bit or around 1,200 decimal digit composite numbers.

The DSA and ECDSA algorithms are based on the same finite field and elliptic curve mathematics as
the key agreement algorithms, described below.

The TLS protocol typically uses the RSA digital signature algorithm, with appendix, to validate signed
certificates for remote entity authentication. The RSA algorithm is best for this application, because the
slow signing operation is done only once, which the much faster verification operation is done very
frequently on smaller computers.

See:
RSA cryptosystem – Wikipedia, https://en.wikipedia.org/wiki/RSA_cryptosystem
NIST FIBS PUB 186, the Digital Signature Standardized and Elliptic Curve Digital Signature
Standard

Notes:

The signing process involves creating a hash of the
message, signing/encrypting the hash and
appending it to the plaintext message.

The plaintext message and signed hash are sent to
the recipient.

The verification process involves creating a hash of
the received message, decrypting the received hash
created by the signer, and comparing the two
hashes. If the hashes match, the message is
authentic and unaltered.

Digital Signature with Appendix

Asymmetric Key Transport Algorithms

This subject applies only to the RSA algorithm, based on the integer factorization problem (IFP) and
described above, and not the DSA or ECDSA algorithms.

For key transport, one entity, such as your browser or VPN randomly generates a key for the symmetric
key bulk data encryption algorithm. This key then needs to be securely transmitted to the remote entity,
usually a website or VPN host. To do this, the random key is RSA encrypted using the remote entity's
public key, recovered in the authentication process. The encrypted symmetric key is then sent to the
remote entity, which is the only entity that can decrypt it, because only it has the private key,
corresponding to the public key used to encrypt the symmetric key.

https://en.wikipedia.org/wiki/RSA_cryptosystem
https://en.wikipedia.org/wiki/RSA_cryptosystem

Notes:

A message or secret key, shorter than the RSA
modulus, is encrypted by the sender, using the
recipient's public key.

The transmitted message can only be decrypted by
the recipient, as only the recipient possesses the
private key.

If the decrypted message/key makes sense, both the
sender and recipient now share the same
message/key.

Any error will cause the decrypted value to be
nonsense.

Message or Key Transport

Asymmetric Key Agreement Algorithms

Asymmetric key agreement algorithms allow two communicants to “communicate in public” and
“compute in private” to generate a shared secret, which is then used as the key for a symmetric key
encryption algorithm. With these algorithms, each communicate generates a random private key, and,
from that key, generates a public key, using a one-way mathematical function. They then each share the
public keys with the other communicant and perform a second computation with their private keys to
generate the shard secret.

The foundational algorithm of this type is the Diffie-Hellman algorithm, basedon the discreet log
problem (DLP). See Diffie–Hellman key exchange – Wikipedia, https://en.wikipedia.org/wiki/Diffie-
Hellman_key_exchange. There are variants of this algorithm, such as the Elliptic Curve Diffie-Hellman
algorithm, which uses different underlying mathematics based on the elliptic curve discreet log
problem (ECDLP). The MQV (Menezes–Qu–Vanstone) and ECMQV algorithms perform the same key
agreement function, plus remote entity authentication.

These algorithms are all based on the fact that exponentiation in the finite field and point multiplication
on an elliptic curve is easy, while the reverse operation is computationally infeasible.

The TLS protocol frequently uses Diffie-Hellman to establish an unauthenticated secure channel
between communicates, through which entity authentication and key exchanged is subsequently
performed.

https://en.wikipedia.org/wiki/Diffie-Hellman_key_exchange
https://en.wikipedia.org/wiki/Diffie-Hellman_key_exchange
https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange

Difffie-Hellman Key Agreement Protocol

Symmetric Key Bulk Encryption Algorithms

Non-mathematical symmetric key encryption algorithms are used to encrypt the actual data for secure
communications. They are symmetric key, with both communicants requiring possession of the same
key for both encryption and decryption. While there are many, many symmetric key algorithms, the
most common algorithm used today is the NIST Advanced Encryption Standard with a 256-bit key
(AES-256).

The current standards are:

NIST FIPS PUB 197, the Advanced Encryption Standard (AES)
NIST SP 800-38, Modes of Operation
See Cryptographic Standards and Guidelines | CSRC,
https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines

Secure Hash (Message Digest) Algorithms

A secure hash algorithm takes a message of arbitrary length and reduces it to a fixed-length value that
is dependent upon all bits in the message. The resulting hash is large enough, 224 to 512 bits, that it is
computationally infeasible to generate a different message or modification of the original message that
results in the same hash. These hashes are often encrypted by a digital signature algorithm, providing
what is knows as “digital signature with appendix,” the plaintext message with the signature appended.

SHA-256 is typically used in the crypto currency technology and will be under threat by quantum
computing. This poses a major problem for crypto currency and its mining operations.

https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines
https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines

The current standards are:

NIST FIBS PUB 180-4, the SHA-2 Secure Hash Standard
NIST FIBS PUB 202, SHA-3 Standard (quantum resistant)
IETF rfc-6234

Algorithm Suites and the TLS Protocol

Given the number of algorithm types and number of algorithms in each type, this is the “ethnic menu”
problem on steroids. The solution is to define the equivalent of the “combination Plate” that makes
sense. These combinations are called algorithm suites and are each defined by a unique number, called
an Object Identifier (OID). This allows new suites to be defined and less secure suites to be phased out
over time. By sharing and comparing OIDs, two communicants can determine the best, common
algorithm suite to be used in each communication.

The TLS protocol is very versatile, but I will only describe the use in this context. Here are the steps in
the TLS Handshake.

ClientHello: The client sends a message specifying the highest TLS protocol version it
supports, a random number, and a prioritized list of supported cipher suites.

ServerHello: The server responds with a message containing the chosen protocol version, a
random number, and the selected cipher suite.

Server Certificate: The server sends its signed digital certificate to the client for authentication.

Key Exchange: The client and server exchange cryptographic parameters to generate a shared
secret key via a key agreement algorithm or to send a secret key from client to server via a key
transport algorithm.

ChangeCipherSpec: Both parties send a message indicating that subsequent messages will be
encrypted using the selected bulk encryption algorithm and shared secret key.

Finished: Both parties send a message to verify that the handshake was successful

The TLS protocol is very flexible and contains mechanisms to provide:

Integrity: Protection again message modification by a man-in-the-middle.

Forward and Backward Security: If a shared secret key is compromized, an attacker can not
decrypt traffic sent between the same communicants in either a previous or a future TLS
session.

Related Questions and Answers

Is the RSA Algorithm Broken?

No! Although the news media routinely reports that the NSA algorithm has been broken, it is just one

key (a large integer) that has been factored into its two constituent prime numbers. This does not make
it any easier to factor another key. A quantum computer recently factored a 22-bit number, which is
significant, but trivial. The largest number factored to date was 829 bits, factored in 2020. See RSA
Factoring Challenge – Wikipedia, https://en.wikipedia.org/wiki/RSA_Factoring_Challenge. Factoring
such a number typically takes around 2,000 cpu-years, which might be 1,000 computers dedicated to
this task for 2 years. Currently, we use 4096-bit keys, with some 2048-bit keys still being around. Since
each increment of 6 bits in key length doubles the factoring effort, we are still far from factoring
currently used keys. Quantum computing may change that in the future.

Can the NSA Break Our Cryptography?

Maybe and maybe not. If the NSA can break our cryptography, it would be in the interest of national
security to not make that known. If the NSA can not break our cryptography, it would also be in the
interest of national security to not make that known either. Suffice it to say that the NSA knows
everything academia knows, but academia does not know what else the NSA might know. The NSA
also has an army of mathematicians and an enormous amount of computational power.

What is Quantum Resistant Cryptography?

If quantum computing comes to maturity, it will have a giant leap in computational power, compared to
today's computers. This means that all traditional cryptographic algorithms will become weak and
subject to attack. Therefore, there has been a decade-plus long effort by all standards bodies to develop
new cryptographic algorithms that can withstand attack by the quantum computers of the future.

What is End-to-End Encryption?

For example, if I am exchanging emails or files with another party, the data is fully encrypted between
my platform and the other party's platform, without the ability of a third party, such as an email
provider, to decrypt the communications.

By contrast, my wife was in health care and had a device to provided encrypted messaging for medical
data, protected under the Health Insurance Portability and Accountability Act (HIPAA). The data was
encrypted between one mobile device and the provider, decrypted by the provider, and then re-
encrypted for transfer to the recipient's mobile device. This is an example that is not end-to-end
encryption.

In multi-party communications, such as a conference call, end-to-end encryption is essentially difficult
or impossible, because multiple “ends” of a connection exist. Here, you need a trusted intermediary
provider, such as described in the previous paragraph. That provider could be one of the communicants,
with a platform power enough to process encryption of data to and from each of the other
communicants.

Role of Elliptic Curve Cryptography

Any algorithm based on the discreet log problem (DLP), such as Diffie-Hellman and the Digital
Signature Algorithm (DSA) can also be based on the elliptic curve discreet log problem (ECDLP). The
advantage of ECDLP based algorithms is that they are fully exponential, meaning that the difficulty of
cracking a key doubles for each additional bit of field length. By contrast, DLP based algorithms are
sub-exponential, with the difficulty of cracking a key doubling for each six additional bits of field
length. This means that ECDLP offers much greater security for much shorter field lengths, but at the
expense of much more complicated mathematics.

https://en.wikipedia.org/wiki/RSA_Factoring_Challenge
https://en.wikipedia.org/wiki/RSA_Factoring_Challenge
https://en.wikipedia.org/wiki/RSA_Factoring_Challenge

Note there is no elliptic curve equivalent for algorithms based on the integer factorization problem
(IFP), such as RSA.

Role of Entropy and Randomness

Cryptography relies heavily upon the ability to generate good, cryptographically strong random
numbers. Compared to just statistically strong, cryptographically strong implies that, given knowledge
on one number, it is impossible to determine the previous or next random number generated. This is
often the “Achilles' heel” of cryptographic implementations, especially on platforms such as personal
computers. NIST has several Special Publications offering guidance for random and pseudo-random
(deterministic) number generators; SP 800-90A, 800-90B, and 800-90C.

	Ethical, Legal, and Export Considerations
	Standards Bodies
	Internet Engineering Task Force (IETF)
	National Institute of Standards and Technology (NIST), formerly National Bureau of Standards
	National Security Agency

	Classes of Cryptographic Algorithms
	Digital Signature Algorithms
	Asymmetric Key Transport Algorithms
	Asymmetric Key Agreement Algorithms
	Symmetric Key Bulk Encryption Algorithms
	Secure Hash (Message Digest) Algorithms
	Algorithm Suites and the TLS Protocol

	Related Questions and Answers
	Is the RSA Algorithm Broken?
	Can the NSA Break Our Cryptography?
	What is Quantum Resistant Cryptography?
	What is End-to-End Encryption?
	Role of Elliptic Curve Cryptography
	Role of Entropy and Randomness

